
Non-Cooperative Game Based QoS-Aware Web Services Composition Approach for
Concurrent Tasks

Haifeng Li, IEEE member
School of Geosciences and Info-

Physics, School of Civil
Engineering, Central South

University, Changsha, China
lihaifeng@csu.edu.cn

Qing Zhu
State Key Laboratory of

Information Engineering in
Surveying, Mapping and Remote

Sensing, Wuhan University, China
Zhuq66@263.net

Yiqiang Ouyang
Department of Urban and Regional

Planning College of Design,
Construction and Planning,
University of Florida,USA

yqouyang@gmail.com

Abstract—Web services make tools which used to be merely
accessible to the specialist available to all, and permitting
previous manual data processing and analysis tasks to be
automated. One of key problem is Web services composition
in terms of Quality of Service (QoS). There are many task
concurrencies, such as remote sensing image processing, in
computation-intensive scientific applications. However,
existing Web service optimal combination approaches are
mainly focused on single tasks by using “selfish” behavior to
pursue optimal solutions. This causes conflicts because many
concurrent tasks are competing for limited optimal resources,
and the reducing of service quality in services. Based on the
best reply function of quantified task conflicts and game theory,
this paper establishes a mathematical model to depict the
competitive relationship between multitasks and Web service
under QoS constraints and it guarantees that every task can
obtain optimal utility services considering other task
combination strategies. Moreover, an iterative algorithm to
reach the Nash equilibrium is also proposed. Theory and
experimental analysis show the approach has a fine
convergence property, and can considerably enhance the
actual utility of all tasks when compared with existing Web
services combinatorial methods. The proposed approach
provides a new path for QoS-aware Web service with optimal
combinations for concurrent tasks.

Keywords; Web service combination; QoS; Non-Cooperative
Game; Nash equilibrium

I. INTRODUCTION
Web services “have a transformative effect on scientific

communities, making tools which used to be merely
accessible to the specialist available to all, and permitting
previous manual data processing and analysis tasks to be
automated” [1, 2]. Web services optimization composition in
terms of Quality of Service (QoS) is a key problem[3-5].

Concurrency of a large number of tasks often exists in
Web services-based applications, especially in crisis-
orientated management. However, when every task
“selfishly” seeks for the optimum solution without
considering the performance of the entire service system,
such methods will result in conflicts between tasks because
numerous concurrent tasks will compete for limited optimal
resources. This means that many tasks will be assigned to the
same optimal service at the same time, which results in the
degeneration of processing service capability, and cause
service quality decline in all service chains[6, 7]. Each

service must deal with different tasks under concurrency;
thus, these tasks form a waiting queue, and response time is
not only influenced by the process ability of the process
service itself, but also by the task load. Moreover, the
complicated construction of service chain control flow
makes the calculation of QoS aggregation value of service
chain, particularly in terms of response time, much harder.

Unfortunately, existing QoS-aware service composition
methods based on optimization theory [3] and pursuing
performance optimization (e.g., time, price, stability, and so
on) under user QoS constraint [8] are unable to solve the
problems mentioned above. For instance, the local QoS
optimal composition methods [9, 10] select an optimal
service via “greedy” means; the global QoS optimal
composition method [11-14], which comprehensively
considers the QoS model, takes the QoS-aware service
composition problem to be a mixed integer linear
programming; the re-planning methods consider the dynamic
change of QoS and guarantee the optimal performance of the
service chain execution under the dynamic environment
through re-planning mechanisms [12, 15-17].

Aimed at solving the conflict of optimal resources
resulting from the competition of concurrent tasks in time
sensitive applications, a non-cooperative game method is
proposed in this paper. Our method assigns tasks to each
service node in a balanced manner, decrease the conflict
caused by competition for optimal resources, and allow each
task to receive the highest performance. The contributions of
this paper are:

First, we modelled the competition for optimal Web
services as a non-cooperative game in which each task
composites concrete services to obtain the best utility
according to the service composition strategies of the other
tasks. To our best knowledge, this is the first model that
considers the Web service composition problem from the
view of the entire system (all tasks) instead of a tradition
single task approach to address the issue of competition
amongst the best Web services using game theory under a
simultaneous task situation.

Then, the control flow characteristics of Web
combination service in terms of the features of multitask
concurrency are analyzed, and the QoS aggregation model of
multitask concurrency and the evaluation model of task
integration utility are advanced.

Lastly, the optimal service combination issue under
competition is analyzed by using non-cooperative game
theory. Moreover, a mathematical model which depicts the

2011 IEEE International Conference on Web Services

978-0-7695-4463-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ICWS.2011.45

444

competitive relationship between multitasks and Web
services under the QoS constraints is established through
using game theory and the best reply function of quantified
task conflicts as bases. Likewise, the study puts forward an
iterative algorithm which reaches the Nash equilibrium on
such basis.

Further content organization is represented as follows:
the second section discusses the non-cooperative game
theory of multitask web service optimal combination; the
third section describes iterative algorithm of best reply; the
fourth section provides experimental results and analysis; the
fifth section illustrates relevant work, and the sixth section
summarizes this paper, and forecasts the further work.

II. NON-COOPERATIVE GAME THEORY OF OPTIMAL
WEB SERVICE COMBINATION FOR CONCURRENT TASKS

The primary consideration here is a phenomenon in
which many concurrent tasks require a service chain of the
same function. For example, in a huge disaster, many
different departments have to implement disaster assessment

through a service chain with identical functions (Figure 1). If
every task takes the “selfish” optimal strategy, and
maximizes its own utility without regard for selections of
other tasks, then each task will select the optimal resource
(heavy line, Figure 1). This will result in the performance
degradation problem of optimal resources, which takes away
from the service chain performance of all tasks.

Optimal Web service combination of concurrent tasks
can be seen as a non-cooperative game process in which all
tasks are dynamically adjusted according to the strategy of
other tasks. Each task continuously readjusts its strategy
according to the combination strategy of other tasks, and
finally reaches the Nash equilibrium[18]. Under the
equilibrium state, each task can attain the widest utility with
considering the combination strategy of other tasks. This also
guarantees the optimization of task performance. As a
consequence, we propose the optimal multi-task Web service
combination method based on the non-cooperative game
theory.

Figure 1. Sample Web service chain of concurrent tasks.

Definition 1 the non-cooperative game model of optimal
service combination: is assembled by players and formed by
each player’s strategy space and utility function, where:

(1) Players: types of continuous tasks exist and every
type of task has the same QoS constraints such as cost and
response time. Moreover, the arrival ratio of every task
follows the Poisson distribution with rate , . A
services chain is composed of the abstract service
collection [17], and every abstract service

comprised of is concrete services with the same functions,
but different QoS, written as [17]..

ssing time of each concrete service follows
the exponential distribution with the even speed
Suppose the proce

; every
concrete service in the service chain can be described as

 queuing syst]. em[19

(2) Strategy: Let represent the ratio of task allocated
to GI service in step , which is the serial numbers of
service in service chain. Vector
represents the service selection strategy of task in step ,
and based on this, the service selection strategy of task is

; , the compositional
strategy of all tasks, is called the combination strategy of
optimal service combination game.

(3) Utility function: stands for the expected
performance executed by every task on service selection. In
this paper, we define task to select s rather than , if and
only if .

The essence of the model is that the combination strategy
of each task is the best reply to that of other tasks. As a

445

consequence, we can use the best reply to define the
competitive relationship between concurrent tasks: task ’s
best reply to strategy combination is , which
means task ’s other strategy will not be more than in
utility[20].
 (1)

represents the strategy
combination vector of all players, excluding player .

Next, we need to define the computing method of every
task ’s utility function under multitask circumstances.

A. Service chain structure model and its QoS computing
method under concurrent tasks
Under multitask concurrency condition, tasks may have

to wait in the service execution queue. Thus, the computing
method of the response time is also different. The queue
model of (Figure 2) is applied to estimate the
response time of processing services. The cost and
availability can be regarded as uninfluenced by the continual
concurrent tasks; accordingly, we can utilize the same
aggregation algorithm as in single task conditions[12].In the

 queue model, each task ’s arrival time follows the
exponential distribution with the speed of , and each
processed service time follows the exponential distribution
with the parameter of . Therefore, each processing service
time is [19].

Figure 2. queue model.

To calculate the aggregation response time of the service
chain, analysis should be carried out in sequential, parallel,
branch, and loop structures:

Sequential structure represents the abstract services
implemented by order;

Parallel structure: the branched abstract services must
be simultaneously carried;

Branch structure: there are branches, among which
every branch is selected according to the possibility .

Loop structure: the abstract services will be re-
implemented for times;

(1) Sequential structure. In the queue network, according
to Burke’s theorem[21], for the queue with arriving
rate of , its output is also a Poisson process with the rate of

. That is to say, for all the processing services of the
sequential structure, the arrival and departure processes
follow the Poisson distribution. As a result, the computing
method of the response time of the sequential structure is

, where represents the total length
of the sequential structure, and indicates the index of steps
in the sequential structure.

 (2) Parallel structure. In the parallel structure, every
branch needs to be implemented, Therefore, the arrival rate
of every branch task is based on Burke’s theorem[21]. The
departure process of each branch also follows the Poisson

distribution with the rate of . Furthermore, the total
response time is determined by the longest parallel branch,
i.e., the key path in parallel structure. As a result, to solve the
response time of a parallel structure, the key path should first
be solved, then the parallel structures serialized. Hence, the
computing method of the response time of the parallel
structure is , where
represents the number of parallel branches, and indicates
the index of parallel structure branches.

 (3) Branch structure. Branch structure describes the
possibility of execution route being selected, if there are
branches, and every branch ’s possibility of being chosen is

, the sum of which satisfies . Accordingly,
the arrival rate of every branch task is . Based on Burke’s
theorem, the departure of every branch follows the Poisson
distribution with the rate of . Tasks are allocated to
different branches with different possibilities in the branch
structure; thus, we can still use the serialization method to
calculate the response time which can be computed as

.
 (4) Loop structure. Different from the loop peeling[6]

and unfolding[10] methods, we consider the loop structure as
the execution feedback to the queue model. Even if it does
not obey Poisson distribution inside the loop structure, the
behaviors of internal processing services can still be
independent as because of the feedback. Thus the
loop structure is still a part of the queue network. In
accordance with Jackson theorem, presuming the internal
arrival rate of the loop structure is , the feedback possibility
is , consequently:

, so
The response time in the loop structure is

.
Under the condition of multitask concurrency, every

processing service needs to simultaneously deal with
different tasks. Thus, for every processing, the arrival
quantity of actual tasks is , and the entire
expected response time of task is the aggregation formulas
of every QoS dimension. When it comes to cost and
availability, the computing methods are the same with [12].

Sequential structure:

Parallel structure:

Branch structure:

Loop structure:

B. The computing model of task utility
In this paper, the cost, availability, and response time are

included in the QoS model, which is a representative
dimension denoting accumulation, multiplication, and
extreme value aggregate theorem[22, 23]. Without loss of
generality, the paper primarily considers the abovementioned

446

three representative dimensions as the QoS computing
indicators, written as , , and .

QoS indicators have differences in value range and
dimension, thus, we first need to normalize QoS indicators.

Different tasks have different preferences over the QoS
dimensions; hence, the different aggregate QoS utility
values with the simple additive weighting method. As a
result, for any task , the utility function can be expressed as

, where represents different QoS
dimensions with different weights; and states the QoS
aggregation utility of the dimension in the task

A. The best reply of a single task
First, we establish the quantitative model for the

competitive relationship between concurrent tasks by
maintaining the computing ability of the services.

Definition 2: The retained computing ability (RCA)[24]
is the available processing ability in the concrete service in
the abstract service of task :
 (3)

Obviously, tasks will impact each other by using the
process ability of Web services. The RCA illustrates how
many abilities of the Web service remain when a task is
assigned to this service. It is thus natural to question how the
task chooses the optimal strategy under this condition.

, , (2)

Where indicates the aggregation function of
normal cost, represents the aggregation
function of normal availability, and states the
aggregation function of normal response time. ,
representing the QoS dimensional index; for example,
indicates the cost; and represents the
maximum aggregation value and the minimum aggregation
value of the QoS dimension in the task, respectively. If

 and are equal to each other, then it represents
the QoS dimension values of the services equal to each other
inside the service chain, thus being assigned as 1.

 is the normalized factor written as .
To decide every QoS, the maximum and minimum values of
the dimension do not need to be gone over specific services
in every abstract service, but must be selected only the
maximum or minimal value inside. As a result, the
normalization process can be achieved in the polynomial
time[12].

Definition 3: Considering the RCA, the optimal problem
 of every task is

 (4)

 (5)

 , (6)

 (7)
(5) describes non-negative conditions. It represents every

processing server is allocated with non-negative tasks; (6)
describes conservation conditions. It represents every task
is allocated to processing services and states stable
conditions, and shows that any arrival rate is smaller than the
biggest service rate to guarantee that the system does not
“explode” because of queuing; (7) explains the constraint
conditions between task and cost, as well as availability and
response time, where , separately represents,
task ’s average cost, average availability, and average
response time constraint conditions. III. ITERATION ALGORITHMS WITH BEST REPLY

Definition 4: Best reply (BR) strategy of every task, is
the solution of .

Based on the non-cooperative game with optimal service
combination, the mathematical model of the best reply of a
single task is first established, and then the best reply of
multitask iteration algorithm is used to solve the non-
cooperative game model of service combination.

Objective and constraint functions are second-order
derivable, which constantly have second-order derivatives
greater than or equal to 0. Therefore, is a convex
programming problem. First-order Karush-Kuhn-Tucker’s
(KKT) condition is necessary and a sufficient condition for
the solution exists. The LaGrange function is

 (8)

Where constraint condition (6) is the assumed condition
of the entire system stability; it can be considered as always
true; therefore

According to KKT condition, for any
, , , the necessary and

sufficient condition between and the solution of is:

 , , (9)
 (11)

 (10)

 , (12)

 (13)

447

 (14)
Where:

 (15)

 (16)

 (17)

 , , (18)
The abovementioned equations form nonlinear equations,

and by solving the equations, we can obtain the best reply
combination strategy in any iterations of task .

B. Best reply iteration algorithm of concurrent tasks
The core concept behind using a best reply-based

algorithm to solve the Nash equilibrium is that every task
resets its own combination strategy according to other
strategies. This process is iterated until it converges to Nash
equilibrium. For instance, the first task uses the original
value to get the combination , where the superscript 1 is
the iteration number. Then, the second task obtains the
optimal combination strategy in accordance with the
combination strategy of the previous task, that is, the best
reply of task 2 compared with that of other tasks. The
process is continued until the last task gains its
corresponding composition strategy according to the
previous task’s combination conditions. Subsequently,
the second round of iteration is implemented; this time, the
first task will update its own combination strategy based on
the combination strategies of all other tasks. The steps can be
called a basic progressive system. Based on the
abovementioned best reply of a single task, we design the
ESS-based best reply iteration algorithm of the multitasks[25]
(Figure 3).

 // composition strategy of task at the xth iteration
 // utility value of task at the xth iteration

 // the number of iteration
 // norm at the xth iteration

,

,

// get the global value of x and sum

// calculate residual services capability

 for each services

 // calculate composition strategy of best reply for
each task at the xth iteration

Figure 3. Multitask best reply’s iteration algorithm, in which
, and is system acceptance tolerance.

IV. EXPERIMENT AND ANALYSIS EVALUATION

A. Simulation environment
To test the efficiency of optimal Web service

combination non-cooperative game method, a simulation
experiment was conducted. First, the abstract service chain
(Figure 1) was simulated, in which every abstract service
includes 10 specific services. Specific services are modeled
as M/M/1 processing queue system, and every queue
implements services based on a “first come, first served”
principle. Afterwards, every QoS indicator value of a service
was randomly created, and all of the values conform to
normal distribution. Based on such conditions, the non-
cooperative game method of optimal Web service
combination was evaluated.

B. Performance Evaluation
In a bid to evaluate the non-cooperative game method

performance of optimal Web service combination, two
classic methods were compared:

Proportional scheme (PS) [26] is a classic distribution
method employing task combination strategy, in which
servers with higher processing ability acquire more tasks
according to the processing ability of servers and based on
the ratio distribution task equilibrium algorithm. In
accordance with the comprehensive QoS indicator of every
service, tasks are distributed, and the weighed utility value of
every QoS indicator is assigned as the combination standard.
Services with smaller comprehensive utility value are
allocated with more tasks.

Mixed integer linear programming-based (MILP) [8, 12]
method is a typical single-task service combination
algorithm with the basic characteristics of optimizing the
combination strategy of every task without regard for the
combination strategy of other task. This method considers
the normalized weight utility of QoS indicator as the optimal
objective function to satisfy user’s global optimal solutions
of QoS demand constraint conditions.

The performance evaluation of the non-cooperative game
method of optimal Web service combination’s was

448

conducted in terms of three aspects: algorithm convergence,
task utility, and fairness of task distribution.

1) Algorithm convergence. One basic issue of the best
reply iteration algorithm is whether it can reach the Nash
equilibrium; i.e., whether the algorithm can achieve
convergence. The combination strategy of each task was
intially set as 0. The combination strategy of each task is
redesigned according to the orderly combination strategy of
other tasks. The algorithm regards the combination strategy
of 0 as the initial point which can be considered as any point
because any given point can be easily converted to point 0.
The experiment demonstrates that the best reply iteration
algorithm has good convergence without dependence on the
chosen value of the initial point. The iteration algorithm can
converge to the Nash equilibrium from any point.

In the iteration process, by adding the number of tasks
and changing the tolerable error norm to change the system
state, we test the effect of these factors on the convergence of
the algorithm. The method is the number of tasks ranges
from 10 to 35, and the average arrival rate of every kind is

, and the tolerable error norm is from 0.1 reduced to

1.0 10-5. As the tolerable error norm increases, the iteration
number of algorithm increases accordingly when the quantity
of tasks is constant. Similarly, the iteration number of the
algorithm increases as the number of tasks increases when
the tolerable error norm changes.

During the process of algorithm convergence, every task
constantly adjusted its own combination strategy according
to strategies of the other tasks; the load condition of every
server also fluctuated regularly with changes in the
combination strategies of the tasks and finally converged to a
relatively fixed value. Figure 4 shows the load change of a
concrete service in the iterative convergence process. For
instance, a service may be presented few tasks to choose
from because of its relatively poor initial performance (wave
trough in Figure 4). In the second round of iteration, however,
its relative performance becomes improved because no task
was allocated; the service may cause load concentration
(wave crest in Figure 4). The fluctuation of the service load
became exceedingly smaller with each iteration process and
ultimately converged at a fixed value.

Figure 4. Service task distribution convergence trajectory.

Figure 5. Comparison between expected and actual task utilities.

Task utility. The best reply iteration algorithm in this
paper reduces the conflicts of multitask optimal resource
selection under the multitask environment, attains the goal of
collaborative optimization, and enhances the utility
optimization of all tasks. The task expectancy utility plans
the stage for the service chain, and the tasks do not consider
the allocations and service optimal combination strategies of
other tasks. The task utility is gained by the task in the
operations. Utility error is the difference between the actual
and expected task utilities. Compared with PS and MILP
(Figure 5), BP method considers the conflicts between the
combination strategies of other tasks. Therefore, the actual
utility and utility error are all minimal. BP method stipulates
that every task constantly changes and finally converges to
the Nash equilibrium according to other task strategies.

Figure 6 shows that as the system load increases, the
actual task utility increases as well. With the increase of
system load, the number of specific service tasks allocated
also increases, and the response time of the service increases

449

too. Then, the actual task utility increases accordingly and
the performance is consequently reduced. The actual task
utility of PS and MILP methods rises as the system load
increases because the methods do not consider the
combination strategies of other users; when the system load
increases to a certain quantity, the task utility of the methods
remarkably increased. BR method states that every task has
to consider the combination strategies of other tasks; thus,
the utility of each task has a nearly linear growth, and the
method does not explode because of the growth of the
system load.

Figure 6. Relationship between system load and actual task utility

V. RELEVANT STUDY
In a Web service system, many services exist; these can

satisfy the same function demands with different QoS
parameters (such as execution time, cost, availability, etc.).
A key problem is how to use the nonfunctional (QoS)
properties of the service as bases to automatically select,
optimize the combination, and execution the Web service
chain [27]. The wide range of studies on QoS-aware service
selection and combination method in the service-oriented
computing area can be divided into two classes according to
whether the running time can be adjusted:

1) Static environment
These methods do not consider dynamic environment

changes and model the QoS-aware service chain
combination as a constraint optimization problem.

According to the differences in computing the optimal
strategy in the static environment, the QoS-aware method
can be divided into two types: local optimization and global
optimization-based methods[12, 28]. Local optimization
method chooses the best services via greedy search. This
method always has best performance but the solution of this
method is not a globe optimal, but a local optimal. Global
optimization-based method overcomes the disadvantages of
local optimization, and can find the global optimization
solution under QoS constraint[11]. Based on its five
dimensions (cost, response time, reputation, success rate,

and availability), the method analyzes work flow control
structure, establishes the QoS-aware integer linear
programming optimization model, and utilizes the general
solver of integer linear programming. However, the method
has the following disadvantages:

2) Dynamic environment
The QoS-aware service chain creation method under

dynamic environments[29-31] is achieved mainly by
supervising service execution and replan or rebind to
guarantee that the service chain can smoothly executed with
optimal performance[32].

Based on the replan [15, 33], the references used genetic
algorithm to solve the QoS combination problems,
considered property changes in executing services, and put
forward a replan mechanism which can be triggered as
quickly as possible when abnormal service conditions appear.
A threshold beforehand is set in the strategy so that when
any QoS property changes more than the threshold does, the
program will replan. However, threshold was not properly
defined, and the specific re-programming strategy was not
provided.

Based on the segmentation optimization concept[34], the
references used a two-stage re-programming method: in the
first stage, the mixed integer programming is slackened into
a linear programming, and allow for the decision variables to
choose values in [0,1], to use the simplex method to quickly
solve the creation conditions; the second stage applies back-
track algorithm to build integer programming based on slack
to obtain a feasible solution.

From the above, existing studies on QoS-aware optimal
service combination method essentially are focused on single
tasks to pursue the optimal solutions based on optimization
theory. The competition and cooperation of resources among
concurrent tasks are very common in the lifecycle of service
optimal combination. Nevertheless, the competition and
cooperation is the basis for maintaining orderliness, high
efficiency, and coordinated services. As a result, studies on
multitask concurrency with QoS-aware space information
optimal service combination method are beneficial in
analyzing and solving optimal combination problems of
high-efficiency service resources in the entire system (all
tasks). In a comprehensive utility perspective, all tasks have
the best comprehensive utility of space information service
to guarantee that in the complicated space service system, the
highly efficient allocation and dispatch of service resources
can be realized.

VI. SUMMARY AND OUTLOOK
Non-cooperative game based QoS-aware Web service

combination method solves the performance bottleneck
caused by optimal service competition in the Web service
chain in multitask conditions, in addition to realizing the
coordinated optimization of all service chains. Theories and
experiment results have demonstrated that the method has a
good convergence and all expected average task utility could
be maximized.

But there still some issues are not considered in this
paper. The main problem is that the best reply based

450

algorithm will increase the computational complexity for the
iteration process. Actually, the performance degeneration is
little with a small given, e.g. equal 10-3, the iteration
number is no more than 16. In this paper, we mainly consider
the response time calculating method and best services
compositing caused by confliction of concurrent tasks, and
the performance of algorithm will be considered in future
work.

Further work will include two parts: theory and
experiment. Theory analysis will include the evolutionary
game model with dynamic environmental changes, system
optimization, Pareto optimization, as well as a relationship
analysis featuring the Nash equilibrium. Experiment analysis
will include more experiments in the PlanetLab.

[14] Shen, Y.-h., and Yang, X.-h.: ‘A self-optimizing QoS-aware service
composition approach in a context sensitive environment’,
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-
COMPUTERS & ELECTRONICS, 2011, 12, (3), pp. 221-238

[15] Canfora, G., Penta, M.D., Esposito, R., and Villani, M.L.: ‘QoS-
Aware Replanning of Composite Web Services’, in Editor
(Ed.)^(Eds.): ‘Book QoS-Aware Replanning of Composite Web
Services’ (IEEE Computer Society, 2005, edn.), pp. 121-129

[16] Claro, D.B., Albers, P., and Hao, J.-K.: ‘Selecting Web Services for
Optimal Composition’, in Editor (Ed.)^(Eds.): ‘Book Selecting Web
Services for Optimal Composition’ (2005, edn.), pp.

[17] Canfora, G., Penta, M.D., Esposito, R., and Villani, M.L.: ‘A
framework for QoS-aware binding and re-binding of composite web
services ’, J. Syst. Softw., 2008, 81, (10), pp. 1754-1769

[18] Fudenberg, D., and Tirole, J.: ‘Game theory’ (MIT Press, 1991. 1991)
[19] Gross, D., and Harris, C.M.: ‘Fundaments of Queueing Theory’ (John

Wiley & Sons, 1985, 2nd edn. 1985)
ACKNOWLEDGEMENTS [20] Weibull, J.W.: ‘Evolutionary Game Theory’ (MIT Press, 1997. 1997)

This work was supported by National Natural Science
Foundation of China (NSFC, 41001220), and Postdoctoral
Science Foundation in Central South University.

[21] Bacon, D.F., Graham, S.L., and Sharp, O.J.: ‘Compiler
Transformations for High-Performance Computing’, ACM
Computing Surveys, 1994, 26, (4), pp. 345-420

[22] Cardoso, J., Sheth, A., Miller, J., Arnold, J., and Kochut, K.: ‘Quality
of Service for Workflows and Web Service Processes’, Journal of
Web Semantics, 2004, 1, (3), pp. 281-308

REFERENCES
[1] Foster, I.: ‘Services for Science’, in Editor (Ed.)^(Eds.): ‘Book

Services for Science’ (Springer-Verlag, 2008, edn.), pp. 3 [23] Marchetti, C., Pernici, B., and Plebani, P.: ‘A quality model for
multichannel adaptive information’, in Editor (Ed.)^(Eds.): ‘Book A
quality model for multichannel adaptive information’ (ACM, 2004,
edn.), pp. 48-54

[2] Foster, I.: ‘Service-Oriented Science’, Science, 2005, 308, (6), pp.
814-817

[3] Menascé, D.A.: ‘QoS Issues in Web Services’, IEEE Internet
Computing, 2002, 6, (6), pp. 72-75

[24] Grosu, D., and Chronopoulos, A.T.: ‘Noncooperative Load Balancing
in Distributed Systems’, Journal of Parallel and Distributed
Computing, 2005, 65, (9), pp. 1022-1034 [4] Menascé, D.A.: ‘Composing Web Services: A QoS View’, IEEE

Internet Computing, 2004, 8, (6), pp. 88-90 [25] Boulogne, T., Altman, E., and Pourtallier, O.: ‘On the Convergence to
Nash Equilibrium in Problems of Distributed Computing’, Annals of
Operations Research, 2002, 109, (1-4), pp. 279-291

[5] Wang, S., Sun, Q., and Yang, F.: ‘Towards Web Service selection
based on QoS estimation’, International Journal of Web and Grid
Services, 2010, 6, (4), pp. 424-443 [26] Chow, Y.-C., and Kohler, W.H.: ‘Models for Dynamic Load

Balancing in a Heterogeneous Multiple Processor System’, IEEE
Transactions on Computers, 1979, 28, (5), pp. 354-361

[6] Alameh, N.: ‘Chaining geographic information Web services’, IEEE
Internet Computing, 2003, 7, (5), pp. 22-29

[27] Hoffmann, J., Bertoli, P., Helmert, M., and Pistore, M.: ‘Message-
Based Web Service Composition, Integrity Constraints, and Planning
under Uncertainty: A New Connection’, Journal of Artificial
Intelligence Research, 2009, 35, pp. 49-117

[7] Alameh, N.: ‘Service Chaining of Interoperable Geographic
Information Web Services’, IEEE Internet Computing, 2002, 7, (5),
pp. 22-29

[8] Ardagna, D., and Pernici, B.: ‘Adaptive Service Composition in
Flexible Processes’, IEEE Transactions on Software Engineering,
2007, 33, (6), pp. 369-384

[28] Ardagna, D., and Pernici, B.: ‘Global and Local QoS Constraints
Guarantee in Web Service Selection’, in Editor (Ed.)^(Eds.): ‘Book
Global and Local QoS Constraints Guarantee in Web Service
Selection’ (2005, edn.), pp. 805-806

[9] Benatallah, B., Dumas, M., Sheng, Q.Z., and Ngu, A.H.H.:
‘Declarative composition and Peer-to-Peer provisioning of dynamic
Web services’, in Editor (Ed.)^(Eds.): ‘Book Declarative composition
and Peer-to-Peer provisioning of dynamic Web services’ (IEEE
Computer Society, 2002, edn.), pp. 297-308

[29] Chiu, D., Deshpande, S., Agrawal, G., and Li, R.X.: ‘A Dynamic
Approach toward QoS-Aware Service Workflow Composition’ (2009.
2009)

[30] Besson, J., and Caplinskas, A.: ‘QOS-Aware Composition of
Enterprise System's Components: Constraint Logic Programming
Approach’, Informatica, 2010, 21, (4), pp. 487-504

[10] 10 Casati, F., Ilnicki, S., Jin, L.-J., Krishnamoorthy, V., and Shan,
M.-C.: ‘eFlow: A Platform for Developing and Managing Composite
e-Services’, in Editor (Ed.)^(Eds.): ‘Book eFlow: A Platform for
Developing and Managing Composite e-Services’ (IEEE Computer
Society, 2000, edn.), pp. 341-349

[31] Zeng, L., Lei, H., and Chang, H.: ‘Monitoring the QoS for Web
Services’, in Editor (Ed.)^(Eds.): ‘Book Monitoring the QoS for Web
Services’ (Springer-Verlag Berlin, Heidelberg, 2007, edn.), pp. 132-
144

[11] Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., and Sheng,
Q.Z.: ‘Quality driven web services composition’, in Editor
(Ed.)^(Eds.): ‘Book Quality driven web services composition’ (ACM,
2003, edn.), pp. 411-421

[32] Zeng, L., Ngu, A.H., Benatallah, B., Podorozhny, R., and Lei, H.:
‘Dynamic composition and optimization of Web services’,
Distributed and Parallel Databases, 2008, 24, (1-3), pp. 45-72 [12] Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J.,

and Chang, H.: ‘QoS-Aware Middleware for Web Services
Composition’, IEEE Transactions on Software Engineering, 2004, 30,
(5), pp. 311-327

[33] Cardoso, J.: ‘Quality of Service and Semantic Composition of
Workflows’, University of Georgia, 2002

[34] Berbner, R., Spahn, M., Repp, N., Heckmann, O., and Steinmetz, R.:
‘Heuristics for QoS-aware Web Service Composition’, in Editor
(Ed.)^(Eds.): ‘Book Heuristics for QoS-aware Web Service
Composition’ (IEEE Computer Society, 2006, edn.), pp. 72-82

[13] Ko, J.M., Kim, C.O., and Kwon, I.-H.: ‘Quality-of-service oriented
web service composition algorithm and planning architecture’, The
Journal of Systems and Software, 2008, 81, (1), pp. 2079-2090

451

